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A uniform approach to construct absorbing artificial boundary conditons for second-order 
linear hyperbolic equations is proposed. The nonlocal boundary condition is given by a 
pseudodifferential operator that annihilates travelling waves. It is obtained through the disper- 
sion relation of the differential equation by requiring that the initial-boundary value problem 
admits the wave solutions travelling in one direction only. Local approximations of this global 
boundary condition yield an nth-order differential operator. It is shown that the best 
approximations must be in the canonical forms which can be factorized into first-order 
operators. These boundary conditions are perfectly absorbing for wave packets propagating 
at certain group velocities. A hierarchy of absorbing boundary conditions is derived for 
transonic small perturbation equations of unsteady flows. These examples illustrate that the 
absorbing boundary conditions are easy to derive, and the effectiveness is demonstrated by the 
numerical experiments. 0 1990 Academic Press, Inc. 

1. INTRODUCTION 

Numerical simulations of many physical processes often require ~al~~latio~s of 
solutions to partial differential equations on some infinite region. In such ~ro~lern§, 
it is essential to introduce some techniques to restrict calculations to a finite 
computational region. (See [l, 16, 201.) A traditional method is the coor 
transformation, by which an infinite physical region is mapped into a finite 
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computational domain. While this technique is effective for some steady state 
problems, it is inadequate for unsteady calculations arising from such applications 
as seismology, meteorology and transonic fluid dynamics. (See [7, 91). An alter- 
native is to impose some artificial boundaries to obtain a finite region. At these 
artificial boundaries, some boundary conditions have to be prescribed to ensure a 
unique and well-posed solution. Over the years, there has been substantial interest 
in developing absorbing artificial boundary conditions that eliminate the unphysical 
reflections, cf. [3-S, 10, 12, 22, 24, 251. 

Using the wave equation as their model, Engquist and Majda [6, 71 proposed a 
pseudo differential operator as a perfectly absorbing boundary condition. Since the 
equation of the dispersion relation of the wave equation admits two modes, the 
right-going and the left-going, which correspond to the two branches of the square 
root function + dm, an equation which admits only one of these modes is 
obtained by choosing a particular branch of the square root. This equation is then 
considered as the dispersion relation of an equation containing a pseudodifferential 
operator. As a pseudodifferential operator is nonlocal in both time and space, this 
boundary condition is not numerically useful in practice. Engquist and Majda then 
used Pad&approximation of the square root d= to arrive at a hierarchy of 
local boundary conditions given by differential operators. These boundary condi- 
tions are perfectly absorbing at normal incidence. 

Higdon [ 131 proposed a process by which Engquist-Majda boundary conditions 
can be generalized to be perfectly absorbing at certain arbitrary angles of incidence. 
In this process, he was able to show that for certain approximations, a differential 
operator in Engquist-Majda boundary conditions can be put into a canonical form. 
It can be factorized into differential operators of first-order, with each factor 
annihilating waves at a specific angle of incidence. This canonical form has theoreti- 
cal and practical advantages: it does a great deal to simplify stability analysis and 
numerical implementation [ 131. Also this characterization of absorbing boundary 
condition highlightens the relation between Engquist-Majda boundary conditions 
and Bayliss-Turkel boundary conditions [S]. 

The purpose of this paper is threefold: 

(1) We propose another approach, which is related to that of Engquist and 
Majda in [6, 71, to construct local absorbing boundary conditions. In their process 
of rational approximation of the square root function, Engquist and Majda have 
used different strategies for different equations, namely, the wave equation in [6, 71 
and the transonic small disturbance equation in [Xl. In our approach, a fairly 
uniform strategy of rational approximation is applied, and the absorbing boundary 
conditions can be automatically generated as long as the dispersion relation is 
known. 

(2) As was pointed out in [13], the factorization theorem of Higdon applies 
only to certain rational approximations for wave equations. We will generalize this 
factorization theorem to show that a larger class of absorbing boundary conditions 
can be in fact put into Higdon’s canonical form. The use of this form will have 
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the advantages both in analysis and implementation, expecially when high-order 
conditions are concerned. When applied to such equations as the wave equation 
and the dispersive Klein-Gordon equation, our method yields the same results as 
established in [ 131. 

(3) High-order absorbing boundary conditions often involve some optimiza- 
tion parameters. Our approach of constructing absorbing boundary conditions 
provides a natural link between these parameters and the group velocities of wave 
solutions. We will show that the optimal absorbing boundary conditions are those 
which are perfectly absorbing at certain group velocities, with each factor annihi- 
lating the wave packets propagating at a specific group velocity. This ~~~sica~ 
interpretation is helpful in determining the optimization parameters. 

In Section 2, we will derive a nonlocal perfectly absorbing boundary condition 
for the travelling wave solutions. Its local approximation will be considere 
Section 3. Also in Section 3, we will describe the general characterization of the 
absorbing boundary conditions. As applications, we will derive a hierarc 
absorbing boundary conditions for the transonic small disturbance equations in 
Section 4. Finally, in Section 5, we will compare by numerical experiments OX 
boundary conditions with Engquist-Majda boundary conditions of [8]. 

2. PERFECTLY ABSORBING BOUNDARY CONDITION 

In this section, we derive a global boundary condition which a~~i~il~tes 
travelling waves of a general second-order hyperbolic equation. In fact, our glo 
absorbing boundary condition applies to any linear hyperbolic equations with 
constant coefficients for which a dispersion relation is known. 

We consider the initial-boundary value problem (IBVP): 

P -$I u=o, 
( > 

t>o, x,30, 

where D = (a/ax,, . . . . a/ax,) and x _ = (x2, . . . . x,,). P is a homogeneous 
of degree two of IE + 1 variables with constant coefficients. Furthermore, 
P is hyperbolic in the direction of t (see [19]) and that g has a compact s~~~or~. 
Problem (2.1) must be solved over a region which is bounded in x1: e.g., 
Q = ((Xl, ..I, x,) I Xl d a). 

By an absorbing boundary condition Bu = 0 at x1 = a, it is meant that the solu- 
tion of (2.1) can be well approximated by the solution of the following problem 
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P ;;Ll u=o, 
c > 

t>O, Odx,<a, 

u(t; 0, x-) =g(t; x-), t>o, x_ ER”-l, 

Bu=O, 
(2.2) 

xl=a, t>o, x- Ew-l, 

u = 0, t < 0. 

Let (z, [)E Rnfl be the dual of (t, x) and 5 _ E R”- i be the dual of x _ . Equation 
(2.1) admits plane wave solutions of the form 

*(t; x) = e’w + t. 4, (2.3 ) 

for (7, 4;) E R” + i, provided the dispersion relation 

cr(7; i”) = P(iz; it) = 0, (2.4 ,I 

is satisfied, where it = (iti, . . . . it,). The group velocity of (2.3) with which the 
energy of the wave packet is propagated is equal to (see [26]) 

c’= -v, .z. 

For a given frequency r E R and a wavenumber E _ E W--l, we assume that the 
equation in (2.1) admits the plane wave solutions (2.3) which propagate in both the 
positive and the negative directions of the x,-axis. Thus for some (z, t-) E R”, (2.4) 
has two roots r:, t; E R such that the x,-components of group velocities V,., are 
positive and negative respectively, i.e., 

The travelling waves which propagate in the positive x,-direction has the form 

u( t; x) = e i(tf+c,+q+t- .x-) (2.5) 

It follows that a boundary condition that annihilates the right-going wave solu- 
tions (2.5) can be written as 

From (2.4), the implicit function theorem leads to 
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SO the perfectly absorbing boundary condition at x1 = a in the absence of evanes- 
cent waves is given by 

p:r,-lyT;q, 
T 5 

Or 

The left-hand side of (2.6) can be regarded as the symbol of a pseudo- 
differential operator which can be expressed in terms of a Fourier integral. This 
operator requires the information of the solution away from the boundary x1 = a. 
An alternate definition of the boundary condition corresponding to (2.6) can be 
formulated as follows. 

For u( t; X) = e i(zff c ‘y), define B* by 

For more general solution, the Fourier transform li(z; x1, <-) of u with respect 
to t and x- can be decomposed into a sum of two terms 

O(z; x1, t-)=f+(2; <-)&‘T”‘+f -(z; t-)e”tr”L. cm 

Then the action of B* on u is 

B*u = 
!! 

We can show that if the IBVP (2.1) generates travelling waves only, i.e., the 
Fourier transform 2 of g satisfies 

then B* defined in (2.8) annihilates the exact solution of (2.1). 
By using the Fourier-Laplace transform, the solution of (2.1) is given by 

In the above integral, c: = 5 + (7; 5 _ ) is the root of (2.4) which satisfies Im 5 T > 0 
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foreach(z;~_)Ea=x[Wn-‘withImz<O.ForzE[W,5:(2;4_)istakenasthelimit 
in the lower-half plane Im r < 0. It was shown in [14] that if l: E R, then 
V,,(<T) 20, i.e., the positive group velocity in the x,-direction. 

Decompose this solution into (2.7), the result is f’ = 2 and f- = 0. Then sub- 
stitute it into (2.8). The first integral in (2.8) vanishes by the relation 
@&,)(~; t:, t-l= I(@L)(c t:, 5-I an so does the second integral because d 
f- =O. This leads to B*u = 0. Thus the solution of (2.1) is a solution of (2.2) if 
B= B*. 

The solution of (2.2) is also unique when B = B*. The boundary condition 
B*u=O implies f-(r; L)=O, because (crr,/crZ)(z; <;, 5-) # I(o&,)(r; t;, i”-)l 
for each (7; 5 _ ). This shows that u is a solution of (2.1) if and only if it is a solution 
of (2.2). 

Therefore the boundary condition B*u= 0, or equivalently (2.6), is a perfectly 
absorbing boundary condition. This boundary condition, however, is nonlocal in 
both time and space due to the presence of the absolute value function in (2.6), 
hence not useful in practice. In order to implement this condition numerically, it 
must be replaced by some local boundary conditions resulting from the rational 
approximations of the absolute value function. Such approximations will be dis- 
cussed in Section 3, but here it is probably worthwhile to mention a connection 
between (2.6) and the perfectly absorbing boundary condition derived by Engquist 
and Majda in [6]. The global boundary condition of [6] involves the square root 
function which also has to be approximated by some rational functions. According 
to Newman [lS], the best rational approximations of the absolute value function 
1x1 and the square root & have the same order of accuracy. In this sense, if (2.6) 
is approximated by a good rational function, the localized boundary conditions 
resulting from (2.6) are as accurate as those of [6, 71. 

3. CHARACTERIZATION OF HIGH-ORDER ABSORBING 
BOUNDARY CONDITIONS 

We now consider the local approximations of the perfectly absorging boundary 
condition (2.6). In designing an absorbing boundary condition two properties must 
be considered: it should minimize the amplitudes of the waves reflected from the 
artificial boundary so that the solution of (2.2) closely approximates the free-space 
solution of (2.1), and it must also be a well-posed condition to guarantee a unique 
and well-posed solution to the differential equation. To study the absorption 
property of a boundary condition Bu = 0 with its dispersion relation B(z, t) = 0, we 
consider the wave solutions of the form 

u(t; x) = e i(+t+r:xi+5-.x-)+rei(rf+e;xl+~-.x-). 

Substitution of u into the boundary condition Bu = 0 at x1 = a yields 

NT; l:, L)+re i(t; - r: jag@; 5;) 5 _ ) = 0. 
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Solving for Y from the above equation, the result is 

Then the reflection coefficient of the boundary condition Bu = 0 is defined by 

The reflection coefficient is the amplitude of the reflected wave. Therefore a per- 
fectly absorbing boundary condition must yield a reflection coefficient equal to 0 for 
all frequencies, e.g., the boundary condition (2.6). This is, in general, impossible to 
achieve for a local boundary condition. Hence, we hope to build a local boun 
condition for which R, is as small as possible. 

A theory to determine the well-posedness of an IBYP has been developed by 
Kreiss [17] and by Sakamoto [21]. The following criterion of well-posedness can 
be found in [7] and [24]. 

WELL-POSEDNESS CRITERION. The IBVP (2.2) is well-posed if and only if 

has MO eigenvalues and generalized eigenvalues. 
An eigenvalue of(3.1) is defined as (7; tl, 4 -) E @ x C x Iw”- ‘, which satisfies (3.1) 

and Im z < 0 and Im [I < 0. A generalized eigenvalue of (3.1) is defined as 

(Gtl, 5-)ERn+l with (z; cl, tp) # (O,O, 0), which satisfies (3.1) and 

Discussions and interpretations of this criterion can be found in [14, 243, an 
[%3] for the analogue of difference equations. 

In order to obtain a local boundary condition approximating (2.6), the absolute 
value function in (2.6) must be approximated by a rational function. By making a 
rational transform if necessary, we may assume that VX, E [ - 1, 11. 

Let Y(X) =p,(x)/q,(x) of order (m, n) be a rational approximation to 1x1 on 
interval [ - 1, 1 f, then (2.6) can be approximated by 
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The left-hand side of (3.3) is a homogeneous polynomial of degree din (r, l), hence 
(3.3) is the dispersion relation of a differential equation. 

An obvious choice of T(X) seems to be the one, r*(x), obtained by Newman in 
[IS], which has an accuracy of order e -‘JI”. This approximation, however, results 
in a boundary condition that is ill-posed, because r*(O) = 0; hence, (3.3) admits a 
generalized eigenvalue. Although adding a small positive constant to r* would rule 
out all generalized eigenvalues while still maintaining roughly the same accuracy, it 
is not clear whether the resulting boundary condition admits other eigenvalues. 
Rather than looking for a function approximating 1x1, we will instead take another 
approach due to Higdon [13], in which we study the necessary form of a well- 
posed boundary condition with the smallest reflection coefficient. 

Equation (3.2) can be expressed as 

where Q is a polynomial of degree d = max{m, IZ + 1 } with real coefficients, which 
can be factorized as 

with vj, wj, Gj E [w. For any polynomial (3.4), there exists a corresponding boundary 
condition whose dispersion relation is given by 

C'Q B ( > 
(Tg, =(). 

't 

The boundary condition corresponding to (3.5) will also be referred as boundary 
condition Q of order d. 

The reflection coefficient of (3.5) is given by 

with obvious independent variables omitted. 
Now, we assume V,, = (~~~/o~.r)(r, 5) E [a, fi] for all (z, {- ) E Y and 5 e (w such 

that ~(7, t)=O, and --co ta<O</?< +co; that is,, the x,-component of group 
velocity has the lower bound CI and the upper bound /?. 

DEFINITION 3.1. Given E : 0 < E < /?, let 

Q, = {Q : real polynomials of degree d}, 
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A boundary condition Q* E Q, is said to be 9:-best boundary ~ondti~~ of 
order d if 

where R, is the reflection coefficient of the boundary condition Q. 

YF-best boundary conditions are the optimal boundary conditions of a fixed 
degree, in the sense that they minimize the reflection coefficient over all travelliar 
waves of propagating speed in the range [a, ,8]. In applications, during the time 
interval of interest, the waves with slow speeds (V,, E CO, E)) will not travel far 
enough to reach the boundary. 

The foilowing definition, due to Wagatha [25], takes into consideration the wave 
modes of every speed in (0, p]. 

DEFINITION 3.2. Let p E ZiO,al with p 2 0 and 

s 

P 
p(v) dv = 1. 

0 

An absorbing boundary condition Q* is said to be PI-best boundary con 
of order dif 

The P2-best boundary condition is similarly defined by replacing R, by Ri in the 
above integral. 

The following theorems characterize the best boundary conditions. 

THEOREM 3.3. Let E > 0. If Q* is a well-posed S!F-best boundary condition, then 

d 

Q*(x) = n (x-u,). 
j-1 

Furthermore, vj E [E, p]. 

THEOREM 3.4. Let Q* be a well-posed P1 (or A?‘))-best boundary condition. Then 
(3.6) holds and uj” (0, p]. 

The proofs of the Theorems 3.3 and 3.4 are identical; we prove Theorem 3.3 only. 

Proof of Theorem 3.3. Since Q* is a polynomial of degree d, it can be fa~~or~~ed 
as 

Cd+ 4)/z 
Q*(x)= fi (x-vi) n [(x-w~)~+$]. 

j=l j=d,+l 

(3.4) 
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(a) We first show that if Q* gives rise to an 8,“-best boundary condition, 
then the quadratic factors must disappear in (3.7), i.e., d, = d. This part of the proof 
was suggested by one of the referees. 

We consider a quadratic factor (x - wj)’ + GJ~ and its corresponding reflection 
coefficient 

where 

c=c,(~:)/G,(~;) and x* = (o,,/~,)(t,“). By assumption, 

a<x- <O<&<X+ <p. 

It is easy to verify, by expanding the both sides, that 

and 

(x- -j;q-q)‘2(x- -M#+q 

This implies 

ei>, ::- 4+q2 
+ -G-m2 forall x- x+ 

2 . 

The equality in the above holds only if ti;. = 0. But because Q* is optimal, the value 
of gj can not be reduced, hence one concludes tij = 0. In that case, this quadratic 
factor is in fact a product of two linear factors. This shows that (3.6) holds. 

(b) We now consider a linear factor (x-uj) of (3.6) and show that if 
vj$ [E, 01, then either the condition (3.6) fails the well-posedness criterion, or it is 
not optimal. 

If vje [a, 01, then the condition (3.6) is not well posed because there exists a 
generalized eigenvalue. Now we consider the reflection coefficient corresponding to 
this factor. 

Rj= 

where x ‘and c are defined in part (a). 
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It is easy to verify if uj E (- co, CI) u (/I, + G3 ), then 

I%/ > 131, for all x-,.x+. 

Also, if ZONE (0, E), then 

for all x-,x+. 

Therefore VIE [E, fl] for Q* to be optimal. This completes the proof. 

THEOREM 3.5. Let Q$ be a well-posed ZCm-best boundary condition. If 

/fJ*(c r:> t-11 G l@,(C 51, 4-N, 

for all(z;[-)E.S$, then R,,<lforall(z;~_)E~and 

lim R,$ =Q, for all (7; S-)Eg. 
d- +m 

Proof. Let 

k(X) = fl (X - 20 
j=l 

then R,,< 1 and limd, +oo R,, = 0. The theorem follows from R,; < R,,. 

From Theorem 3.3, the dth order g6” (Yi or 9”)-best condition for t 
problem (2.1) whose dispersion relation is a(~; <) = 0 must have the form 

(3.8) 

where D = (a/ax,, . . . . a/ax,), vj~ [E, /I] (or (0, p]). In particular, the Z1 (or 
9’)-best boundary conditions can be generated automatically with the help of a 
symbolic manipulation program in the following manner. First, the derivatives otl, 
6, are calculated from the dispersion relation ~(7; c) = 0. Then the parameters vj 
can be approximated through a numerical process to minimize the integral in 
Definition 3.2. Finally, analysis for well-posedness can be carried out for each factor 
of (3.8), which is simple as shown in the next section. 

4. ABSORBING BOUNDARY CONDITIONS FOR A CLASS OF 
TRANSONIC SMALL DISTURBANCE EQUATIONS OF UNSTEADY FLOWS 

In their paper [S], Engquist and Majda derived absorbing boundary conditions 
up to the second order for the unsteady transonic small disturbance equation of low 
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reduced frequencies. Their derivation, based on the framework of their earlier work 
[7], did not, however, provide a uniform approach in constructing the local 
boundary conditions. Different strategies had to be used to approximate the square 
root while handling the sidewall conditions. Furthermore, if a higher order 
approximation is required, their method leads to two unpleasant difficulties: the 
determination of well-posedness and the selection of the parameters. Although 
general guidelines for selecting the parameters were given, these guidelines do not 
have a direct physical interpretation. 

In this section, we will recreate the artificial boundary conditions for the trans- 
onic small disturbance equation of low reduced frequencies treated in [8]. From 
our approach a connection between absorption properties and group velocities of 
the interior disturbance is revealed. Boundary conditions for the transonic small 
disturbance equation of full frequencies will also be considered. 

4.1. Equation of Low Reduced Frequencies 

By a standard frozen coefficient theory, we may assume that the equation is 
linear with constant coefficients and the flow is subsonic, which is the case in 
far-field. Thus we consider 

(4.1) 

Let (7, 5, q) be the dual of (t, x, y), then the dispersion relation of (4.1) becomes 

a(~, i”, q) = 225 - K*t* - $ = 0. (4.2) 

We first consider the sidewalls. 

Sidewall Conditions 

The y-component of the group velocity of the plane wave ei(rf+Cx+Vy) is equal to 

Dividing through (4.2) by c*, we have 

0 
I! 

2 

5 
=25-K*. 

(4.3) 

From this relation, we are able to determine the range of group velocity. Since the 
right-hand side can be made arbitrarily large, the group velocity is unbounded, i.e., 

VyE(--CO, +a). 
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Even though the propagating speed in the y-direction may be infinity, it can 
be justified to consider only the group velocities in a bounded interval, for the 
following reasons. 

The propagating speed of a plane wave in the y-direction becomes infinity only 
if the wave is parallel to x-axis, i.e., t = 0. In this case, as is easy to verify, the 
propagating speed downstream is also infinite and is much faster than the 
y-component because 

V -J-+0 
VX 

as c” -PO. 

This implies that the disturbance with infinite y-direction speed will actuaiiy strike 
the downstream boundary first. So in designing a sidewall boundary condition, we 
need ony to consider those waves with finite propagating speed in the y-direction. 
Thus, we may assume there is a p > 0 such that 

For a given (7, l) E R2, Eq. (4.2) has two roots y+ = -q-, corresponding to the 
two travelling wave modes, with 

o< VJqf)= -VJq-). 

Thus as a direct consequence of Theorem 3.3, an 5?:-best boundary c~ndi~~~~ of 
order d at sidewall y = b (resp., y = -b) must have the form 

with uj E [E, fl] (resp., vj E [ --/I, - E] ), E > 0. If the reflection coefficient of (4.4) is 
denoted by R,, then it follows from Theorem 3.5 that 

&J(G 5) < 1 for ail (7, 5) E 3: 

where y?, is defined in the Definition 3.1. 
The theory of Section 3 does not assure that the boundary condition given by 

(4.4) is well posed; it has to be determined by the criterion given at the b 
of Section 3. In order to prove the well-posedness, we need only to show t 
factor in (4.4) yields a well-posed boundary condition. Thus, let us con 
factor (x - vj). The dispersion relation of the corresponding boundary condition is 

r --- 
5 

vj = 0 

or 

q+t$=o. (4.5) 
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Let us consider the mutual solutions of (4.2) and (4.5). For any 5 E R, the solu- 
tion q of (4.5) is always real, thus an eigenvalue does not exist. Also, for any < E R, 
(e, q ‘) will never satisfy (4.5), since vi < 0. This implies there is also no generalized 
eigenvalues, so the boundary condition is well posed. 

From this, the best boundary condition at the sidewalls should have the form 

(4.6) 

with vj c 0 for y = -b and vj > 0 for y = b. The parameters vis must be tuned to 
make the reflection coefficient small. Details in the determination of parameters will 
be given in Section 5. In general, if we know a priori the main interior disturbances 
propagate with certain speeds in the y-direction, these disturbances can be exactly 
annihilated by tuning vj to those speeds. 

In [S], vl= -@ was chosen for the first-order condition, which annihilates 
exactly the waves travelling in the y-direction only, i.e., with zero speed in the 
x-direction. 

Upstream Conditions 

The x-direction of group velocity is given by 

v,=or= -K*+;. o’r 
By employing the previous techniques, we find that 

It follows from Theorem 3.3 that the dp,“-best boundary condition of order d at 
x = -a has the form (which is well posed): 

jfjl(:-( ) K*+v,)L lp=o, (4.7) 

where vi E [ - K*/2, -E]. Its reflection coefficient is smaller than 1 by Theorem 3.5. 
For the first-order condition, vi = - K*/2 was chosen in [S], the corresponding 
boundary condition annihilating waves travelling at the fastest speed upstream. 

The second-order condition of [8] is given by 
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which is also a special case of (4.7). In fact, if one solves for d,, from (4.1) an 
substitutes it into the above equation, the result is 

This reduces to (4.7) with vi = I+ = - K*/2. 

Downstream Conditions 

At the downstream x=a, the LYE*-best boundary condition also has the form 
(4.7) but with vj > 0. Condition (4.7) is well posed at x = a if vj > 0, and its re 
tion coefficient is equal to 

Vj-(K*+Vj)Jm 
> v~+(K*+u~)J~ ’ 

It is clear that R(r, y) < 1 if JFm#O, i.e., V,(t) #O. 
Since the interior disturbance might contain certain modes which have i~~~it~ 

downstream speed, one of the parameters can be tuned to annihilate these wave 
modes, e.g., v1 = + cc in the first-order condition. In this case, the reflection 
coefficient becomes 

and the corresponding 
211” scn: 

boundary condition is obtained by taking tke limit 

at x= a. 

This is exactly the boundary condition given in [S]. For higher order, we pro 

1 a d a 
---- +=fJ, 

rvvjat i ax ax 

4.2. Equation of Full Frequencies 

We now consider the full frequency transonic small disturbance equation 

40 + 24x, = K*4xx + 4,,. 

Its dispersion relation is 

fl(z, (, y) = T2 + 252 - AT*<* - y2 = 0. (4.9) 
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Sidewall Conditions 

The y-component of group velocity is equal to 

It can be shown that 

and the two travelling wave modes satisfy 

Applying Theorem 3.3 and Theorem 3.5, the LZ,“-best condition has the form 

Q*Cx)= fi Cxpuj), 

j=l 

vj~ [ - 1, -E] for y = -b and vj E [E, l] for y = b. Furthermore R,, < 1. Therefore, 
the sidewall conditions may be chosen as 

l_dl i$ 4 + vj f + Vj g 
) 

4 = 0. 

The condition is well posed. 

Upstream and Downstream Conditions 

From the dispersion relation (4.9), we find 

5 
v,=l-(K*+l)- 

r+l 

and 

It follows from Theorem 3.3 that the absorbing boundary conditions can be taken 
as 

f/ ((lAvj)$( 
j=l 

K*+v,)& $!5=0, 

> 

(4.10) 

where vi E [ 1 - ,/6?, -E] for upstream condition and vj E [E, 1 + ,/ml for 
downstream condition. 
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It can be verified directly that the reflection coefficients associated with (4.10) for 
both upstream and downstream are strictly less than I, except for the mode with 
zero x-component group velocity. 

5. NUMERICAL COMPUTATFONS 

In this section, we discuss the numerical implementation and present some 
computational results involving the absorbing boundary conditions derive 
last section. For the purpose of illustrating the efficiency of these conditions, we 
compare the computational results obtained by using the boundary conditions of 
this paper with those developed by Engquist and Majda in [S], both applied to the 
hnear equation (4.1) in the region 52 = [- 1, I] x [ -1, l]. We note that the 
first-order conditions derived from the last section are the same as those derived 
in [S]. 

Specifically, we compare the following sets of conditions: 

Upstream. First-order: 

fp,+v~,=O. 

Second-order: 

Downstream. First-order: 

Second-order: 

Sidewall ( y = 1). First-order: 

Second-order: 

q&+v(iJ,=o. 

#ty + r2d, + rl#xl = 0, 

(5.1) 
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5.1. Parameters 

Theoretically, the parameters in the above boundary conditions should be deter- 
mined by the minimization properties stated in Definitions 3.1 and 3.2. Such 
process, however, is hardly necessary in practice, nor will it always yield the best 
result for all problems, because the definition of the LYP,“- or $p2-best conditions 
itself depends on the arbitrary choice of E or the weight p. In the present study, we 
use the following procedure in which the parameters can be easily determined. 

For the upstream conditions, the parameters must satisfy v E [ - K*/2,0). The 
first-order condition is tuned to the waves travelling most rapidly upstream by let- 
ting z, = - K*/2. In the second-order condition (5.1), the two parameters are chosen 
as vr = - K*/2 and v2 = - K*/4, the mid-point of [ - K*/2,0). 

The parameters in the downstream conditions must be in (0, +-co), which is 
unbounded. However, a transformation exists to map (0, + co) to the bounded 
interval (0, l), hence the similar method as above can be used. Recall from 
Section 4 that a factor of reflection coefficient of the downstream condition is 

R,=vj-(K*+Vj)~~’ 
’ vj+(K*+vj),/~’ 

= Uj/(K* + Uj) - Jm 

vj/( K* + v,) + J?w ’ 

where vj/(K* f vi) E (0, 1). 
Thus the first-order downstream condition is obtained by letting v/(K* + v) = 1, 

i.e., v = + co. The remaining parameter v in the second-order condition (5.2) is 
determined by requiring v/(K* + v) = i, therefore, v = K*. 

In the case of sidewall, we have to deal with the genuine unbounded interval. For 
the reasons mentioned in section 4, v= fi in the first-order sidewall (v = 1) 
condition. Parameters vr, v2 in (5.3) are determined by minimizing the integral 

e -a(X-v’+)ZR2(X)2 &, 

where, by Section 4, 

By a change of variables, the above integral becomes 

where B = p/,,16, & = UK* and Cj= v,Ifi. v”, and i& can be computed by a 
numerical integration and optimization algorithm. For fl= 10.0 and Li = 0.1, we 
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found, correct to the first digit, v”r = 3.0 and C2 = 0.4, hence vr = 3.0 m and 
u2 = 0.4 ,/% in (5.3). This particular choice of parameters yields a reflection 
coefficient R, ~0.05 for all wave modes with the group velocities in the range 
LO.25 fi, 5.0 ,,I’??] (see [15]). 

Finally, in this study, rl = 6.4641 .J’?? and r2 = 5.4641&L* in [S] second-order 
condition, according to one of the guidelines of [S]. 

5.2. Discretization 

Equation (4.1) is discretized by a semi-implicit scheme described in [IL], where 
the x-direction is treated explicitly and the y-direction is kept implicit. The rest&i 
difference equation is solved by marching both in the X- and t-direction. 
a given time level, tridiagonal equations are solved along the y-directions, 
successively marching in the downstream direction. For stability, the CFL condition 
K”(At/Ax) d 2 must be satisfied. The scheme is nondissipative when K*(At/A 

For the first-order boundary conditions and the second-order Engquis 
[S] boundary conditions, we use exactly the discretization suggested in [S]. Since 
each factor in (5.1), and (5.3) is in the form of the first-order operator of the corre- 

100 

90 

80 

IO 

0 
0 30 60 90 120 150 280 210 2 

Time Step n 

FIG. 1. Energy of the solution, with the perfectly reflecting condition on all four sides. The decrease 
in the energy is due to the dissipation of the scheme. 
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sponding first-order boundary condition, the discretizations of (5.1) and (5.3) are 
obtained by applying twice the difference operators which discretize the correspond- 
ing first-order boundary conditions of Engquist and Majda. For example, in [S], 
the boundary condition 

is discretized by 

i 
I- IC’ 
-j-p+JP)+v dx I-((I+K-‘) q5;ilk+:1=o, 

I 

where J, K are shift operators in x and y respectively, Jc& = c&f+ I,k, KdTk = 4; k+ 1. 
By applying this twice, the difference equation for (5.3) becomes 

I-K-l 
--@I+J-‘)+v,~ (I+ K-‘) 

I-J-‘(I+K-‘) dx 

Condition (5.2) is discretized by an explicit scheme, backward in x. 

(5.4) 

30 60 90 120 150 180 210 240 

Time Step n 

FIG. 2. Energy of the solutions: Upstream boundary, u1 = -K*/2, vz = -K*/4 in condition (5.1). 
First order (- ); second order [S] (- . -); second order (present) (---). 
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The stability of these difference schemes can be determined by the GKS theory 
[ 111, or by numerical experiments. Because of the factorization form, the d~~er~~~e 
schemes for the higher order boundary conditions are stable if and only if, by the 
GKS theory, the schemes for the corresponding first-order conditions are stable. 
The discretization of the first-order boundary conditions is discussed in detail in 
[S], and although no analysis has been attempted, these schemes are found to 
stable by numerical experiments, even for the nonlinear problem. 

Since the interior equation is solved line by line marching in the downstream 
direction, the boundary condition (5.4) which requires values of 4 at j- I, j- 2 
cannot be applied to the immediate neighboring point of the corner of the upstream 
and the sidewall boundaries. This difficulty is overcome by using the fol~o~i~~ 
condition at the upstream corner, 

where 0 < CI d 1. a decreases smoothly from LX= 1 at the upstream boundary to 0. In 
OUT study, the transition region of CI from 1 to 0 extends to 2 grid points. 
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FIG. 3. Energy of the solutions: Downstream boundary. u = K* in condition (5.2). (Notation as in 
Fig. 2.) 



226 JIANG AND WONG 

There is no difficulty at the downstream corners, since these corner points are not 
involved in the computation. 

5.3. Energy 

In the following computations, we will u-se the energy of solutions as a means of 
measurement. The energy 

~~+l,k+l+#~+l,k-~~k+l-~Zk 2AxAy 
2Ax I 

~~+I,k+1+~~k++--~+l,k--~k zAxAy 

DAY > 

is the discrete version of 

90 

80 

70 

6C 

s 
z 5c 

P 
4t 

3c 

- 

l- 

I- 

)- 

l- 

)- 

I- 

)? 

2c 

1c 

c 
0 30 60 90 120 150 180 210 240 

Time step n 

(5.5) 

of the solutions: Sidewall (y = 1) boundary. I* = 6.4641 .@, y2 = 5.4641K* in [S], 
m condition (5.3). (Notation as in Fig. 2.) 
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z-10.0 X=-l.0 %I.0 

FIG. 5. Large computational area for free-space solution calculation. Upstream boundary. 

It is easy to verify that if q5 satisfies (4.1) in Ix/ < I and / y! < ! and the perfectly 
reflecting boundary conditions 

tp=o at x=&l and y= i-1, (5.6) 

then the energy of solutions is conserved; that is, 

&E(t)=O, for all t. 
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Time Step n 
FIG. 6. Energy of the reflected waves: Upstream boundary. (Notation as in Fig. 2.) 



228 JIANG AND WONG 

In order to examine the effects of each absorbing boundary condition, without 
being influenced by the presence of the other boundary conditions, we will use a 
strategy where the absorbing boundary condition will be prescribed at one bound- 
ary only in each experiment, and the perfectly reflecting boundary condition (5.6) 
will be imposed on the remaining boundaries. In the first group of calculations, the 
energy (5.5) of solutions in the domain Q = [ - 1, 11 x [ - 1, 1 ] will be computed. 
Therefore, the rate of decrease of the energy will demonstrate the ability of the test 
boundary condition to radiate the energy away from the computational domain, 
because by (5.7), energy of the solution will be totally reflected back from the other 
three perfectly reflecting boundaries. 

In all computations, K* = 1 is used in Eq. (4.1), and the region Q = 
[ - 1, l] x [ - 1, l] is covered by a 60 x 40 uniform mesh, with a CFL condition of 
1.997. For an initial value, we use a pulse of compact support, a piece of radially 
symmetrical sine function. Energy of solutions is calculated after every 10 time 
steps, with a total computation of 230 time steps. The initial pulse will soon spread 
out in a parabolic wavefront [S], and total reflections will occur at the three per- 
fectly reflecting boundaries, so after some time, the disturbance that strikes the test 
boundary will consist of wave packets with a fairly large spectrum of frequencies 
and wave numbers. 

Time Step n 

FIG. 7. EQergy of the reflected waves: Downstream boundary. (Notation as in Fig. 2.) 
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Figure 1 shows the energy E’(n), given by (5.5), of the solution of (4.1) with the 
perfectly reflecting boundary conditions (5.6) at different time steps. The decrease 
in the energy is due to the dissipation of the difference scheme. In order to eliminate 
the effect of this dissipation in our study, the energy of the solutions for other 
calculations will all be scaled by E’(n), i.e., the energy 

e(n) = 

will be used for other calculations. Therefore e(n) 5 100 if the perfectly reflecting 
boundary condition 4 = 0 is prescribed on all boundaries. 

The results of calculations involving boundary conditions on the upstream, 
downstream and sidewall (y = 1) boundaries are presented by graphs in Fi 
Fig. 3, and Fig. 4, respectively. The curves of the energy e(n) all follow one pattern: 
during the short period of the initial time (about 30 time steps), the three (one first- 
order and two second-order) boundary conditions produce roughly the same 
results, but they differ significantly after a long time period (after about 13 
steps). 

In the second group of calculations, we measure the energy of the reflected waves 
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FIG. 8. Energy of the reflected waves: Sidewall (y = 1) boundary. (Notation as in Fig. 2.) 
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of different absorbing boundary conditions. The reflected wave is obtained by com- 
paring the solution of an absorbing boundary condition with the free-space solution 
which is calculated in a larger computational area. For example, in the computa- 
tions involving upstream boundary conditions, the free-space solution is calculated 
in the region D u D as illustrated in Fig. 5. Then an absorbing boundary condition 
is used on the boundary x = - 1, and the corresponding solution is computed in the 
region L?. The difference of these two solutions in Q can be considered as the 
reflection caused by the absorbing boundary condition. Similar methods are used 
for the downstream and the sidewall boundaries. 

The results for the energy of reflected waves are shown in Fig. 6, Fig. 7, and 
Fig. 8. As before, the energy is calculated at every 10 time steps. In each graph, the 
curves are scaled so that the maximum energy in the first-order boundary condition 
is 100. 

These numerical results clearly show the improved performance of the second- 
order absorbing boundary conditions over the first-order conditions. In long 
time computations, the second-order conditions (5.1), (5.2), and (5.3) produce less 
reflections than the corresponding [8] conditions. However, the second-order [S] 
conditions generated smaller reflections during the very short period of the initial 
time because they are tuned to the waves travelling most rapidly. These observa- 
tions agree with the analysis of the reflection coefficients given in the Section 4. 
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